
1

Table of Contents
1 Introduction 4

1.1 Problem Statement 4

2 Design 4

2.1 Revised Project Design 4

2.2 Requirements & Constraints 4

2.3 Engineering Standards 5

2.4 Security Concerns and Countermeasures 6

2.4.1 Physical Security 6

2.4.2 Cyber Security 6

3 Implementation 6

4 Testing 9

4.1 Testing Process 9

4.2 Unit Testing 9

4.3 Interface Testing 9

4.4 Integration Testing 9

4.5 Acceptance Testing 10

4.6 Results 10

5 Related Products & Literature 10

5.1 Prior Work/Solutions 10

6 Closing Material 11

6.1 Conclusion 11

6.2 References 11

6.3 Appendices 12

6.3.1 Appendix I - Operation Manual 12
6.3.2 Appendix II - Alternative Versions 12
6.3.3 Appendix III - Other Considerations 12
6.3.4 Appendix IV - Code 17
6.3.5 Appendix V - Lab Module Example 19

2

List of Figures

Figures

Figure 1. Actor Critic Method 7

Figure 2. Petoi Bittle with Shoes 17

Figure 3. Component Diagram 17

Figure 4. Conceptual Design Diagram 18

3

1 Introduction

1.1 PROBLEM STATEMENT

The main goals of our project are to successfully demonstrate embedded machine learning on an interesting
application and to make recommendations for incorporating embedded machine learning in a course for the
CPR E department.

Our team has decided to train a robot to walk via reinforcement learning as our chosen application for our
embedded system machine learning project. The machine learning algorithms that are chosen must be
applicable to the robot and, thus, will be restricted to the resources of the robot’s embedded system. We
plan to utilize a combination of virtual environment and physical environment to train the robot throughout
the project time duration.

2 Design

2.1 REVISED PROJECT DESIGN

Over the course of this semester, our project design has remained, for the most part, consistent with the
planned project design developed last semester. The main change to our initial project design was to utilize
PyTorch over TensorFlow as part of the learning testbed used to train the robot dog. Initially, TensorFlow
was selected over PyTorch because several group members already had previous experience with
TensorFlow. However, after implementation began, there was an issue we ran into with TensorFlow, and we
were having trouble working around it. We tried to see if we could get something working with PyTorch
code, and it produced better results. As we experimented with PyTorch more, we discovered that it was
easier to use compared to TensorFlow. With the switch to TensorFlow, we also switched to using PyBullet
instead of Mujoco. PyBullet and Mujoco are both physics engines that help simulate how the robot will
move. PyBullet offered better integration with PyTorch, and Mujoco was giving issues with loading the
URDF file that defined the elements of our virtual robot.

2.2 REQUIREMENTS & CONSTRAINTS

Our functional requirements include training the robot virtually using the OpenAI Gym and PyBullet
toolkit. Virtual training allows us to utilize more computing power for training, and the physical
components of the robot will take no wear or damage. Another requirement is for the inference process to
be done locally on the robot. Additionally, the robot should be able to walk stably without having to send
information to an external device to process the data. As far as walking, the goal is for the robot to walk at a
speed of 0.19ft/s which is the same walking speed the robot has using its default controller walking.

Another type of requirement the team needs to be aware of is the different types of resource and
non-functional requirements the project has. First, the team will use the Petoi Bittle Robot Dog as the test
bed for our embedded machine learning application. The reasoning for using the Petoi is because it is easily
repairable, and we wanted to be able to have a usable device that could easily be repaired and maintained in
working condition. With those considerations in mind, the Petoi Bittle is the chosen platform to use for our

4

application, hence it is a resource we will require. Secondly, we need to ensure that we are using a platform
that supports the embedded system usage we are aiming for. Because of this, we will require a resource
such as a Raspberry Pi or a type of Microcontroller that allows us to program the Petoi Bittle Robot Dog.
With these two resources in mind, we will also need to keep our system somewhat modular. This will allow
for the application to be scalable and practical for student projects or other classroom and university
applications. Lastly, one of the other most important resource requirements we’ve identified is being able to
use resources a university would have access to for course implementation. This includes using affordable
and accessible components and using systems and coding languages the university has access to. We plan to
utilize OpenAI Gym (provides training environment), PyBullet (a physics engine), PyTorch, Python, C++,
LibTorch, and two open source embedded libraries (pca9685 for servo control and MCU6050 for the IMU).

Other requirements of our project include compiling a list of useful machine learning resources that
demonstrate new learning the team has acquired as well as attending keynotes at Imagine 2021 and
completing the Coursera course on embedded machine learning. These resources and new learning will
help facilitate the development of a machine learning course. Additionally, given our project is more open
ended, part of the main initial requirements of the project is to define exactly what our project focus will be
and figure out what requirements are necessary for the selected application. One of the main goals of the
project is to be able to incorporate what we develop and learn into a course at ISU; therefore, it is important
that we develop in a way that is modular so that course implementation is feasible.

As for constraints, we are working on a clock and need to have the project done by the end of the spring
semester of 2022. We need to be able to get the robot in time and then train the robot.We are working with a
budget of $600, which should be plenty as the robot costs $300. Since we are trying to create a class or
concepts for a class out of this project, we need to use reusable components such as common coding
languages, specifically C++ and Python. The tools that we will be using for training the robot is OpenAI
gym. The inputs that we get are IMU readings and servo positions and the

2.3 ENGINEERING STANDARDS

The first engineering standard associated with this project is the UM10204 bus specification. The chip𝐼2𝐶
onboard the robot is the ATMEGA328 and will not likely have the computing power necessary for our

application. The board has the ability to switch communication from the ATMEGA328 chip to an bus𝐼2𝐶
controlled by a Raspberry Pi. The next two standards relate to the design and testing of autonomous robots.
The IEEE P1872.2 standard for autonomous robots ontology set guidelines for building autonomous
systems consisting of robots operating in various environments, and the P2940 standard for measuring
robot agility will provide quantitative test methods that are useful to show how well our robot walks. The
Petoi Bittle robot dog is powered by a lithium ion battery pack sized for its current peripheral load.
However, as we add more functionality, the battery pack may need to be expanded to accommodate the
extra load. The standard that will apply to this is the IEEE 1725-2021 standard for rechargeable batteries
for host devices such as mobile phones. Lastly, we may want to incorporate wireless communications for
control of the robot, which will be accomplished through the Raspberry Pi. The IEEE 802.11 standard for
wireless local area networks will guide our use of the wireless network.

5

https://github.com/Reinbert/pca9685

2.4 SECURITY CONCERNS AND COUNTERMEASURES

2.4.1 Physical Security

First and foremost, for the physical security of our robot, there would be the protection of the robot itself so
when it falls over during training or gets hit while walking, it will not fall apart and stop working. Second,
on our robot we have a Raspberry Pi which could be accessed if the robot were to be off or not moving.

As for the first countermeasure, we can protect the robot from breaking by making sure everything is
securely put together and then we can put a protective layer “Hood” over the electronic parts on the top of
the robot. For the second counter measure, we could create a tab to go over the plugs on the Raspberry Pi.
This would not stop someone from taking off the tab and getting into the Pi but it would slow down the
process. The best way to protect against someone getting into the Pi would be with Cybersecurity.

2.4.2 Cybersecurity

The first concern for cybersecurity would be attackers logging into the Raspberry Pi through SSH. A
second concern would be attackers logging into the Pi by hardwiring into it. These are concerns because if
an attacker were to gain access to the Pi either virtually or hard wired, then they could change code for the
robot. A third concern would be DoS (Denial of Service) and DDoS (Distributed Denial of Service) attacks.
This is a concern as an attacker could overload the Pi and disable it which would then disable the robot. A
fourth concern would be using the default Pi user on the Raspberry Pi. This is a concern because the default
Pi user is the most brute forced password on the planet. A fifth concern would be man in the middle attacks
if we are sending information from our computers to the Raspberry Pi. This is a concern because if we are
not using the correct services, our traffic may not be encrypted. A sixth concern would be if someone is
already in the system, how would we shut down the robot.

For the first concern of logging into the Raspberry Pi through SSH, you can change the port that the SSH
service uses so it slows down the attacker because they would have to find the correct port. Another thing
that can help with this concern is having the attackers be locked out after so many login attempts. Lastly,
we can allow only certain people through the firewall to login so that if you have the wrong IP, you never
get the chance to login. For the second concern, we can implement the same login attempt countermeasure.
For the third concern, we can limit the amount of traffic coming into the Pi so that these attacks cannot
happen. For the fourth concern, we can disable the default Pi user and create a new account to use with a
secure password. For the fifth concern, we can use secure services to send information over the wire to the
Pi like HTTPS (Hypertext Transfer Protocol Secure) and SFTP (Secure File Transfer Protocol). For the
sixth concern, we can have a script that we can log in and run that would shut down the robot and shut out
anyone in the system.

See more Raspberry Pi Security information at - https://raspberrytips.com/security-tips-raspberry-pi/

3 Implementation
To begin our walking robot implementation, we have experimented with deep Q networks (DQN) and deep
deterministic policy gradient (DDPG) to solve the mountain car problem. This allowed us to practice
implementing reinforcement learning before taking on the more challenging task of implementing an
algorithm for our robot application.

6

https://raspberrytips.com/security-tips-raspberry-pi/

Through this practice implementation, we have developed a better understanding of the actor critic method.
Initially, the neural network will know nothing. The actor will take in a state and then output an action. On
the other hand, the critic takes in a state as well as the agent’s action and then predicts the value of the next
state. The actor will learn based on the critic’s suggestion. Utilizing reward, the critic is able to learn and
adjust to the desired outcome. As the critic improves, the actor gets better feedback and thus is able to
improve. The figure below demonstrates this process.

Figure 1: Actor Critic Method

After the practice implementation, there were several main tasks to be completed for our project
implementation: establishing communication between the Petoi Bittle board and the Raspberry Pi,
constructing a robot model for virtual training, completing Python training, and developing the C++
application.

The Petoi Bittle came with a NyBoard V1_0, which contained an MPU6050 motion sensor as well as a
PCA9685 16-channel PWM controller. The Raspberry Pi communicated with these peripherals using the
I2C protocol. The MPU6050 produced accelerometer and gyroscope data which was used to determine the
orientation of the robot. To convert the raw IMU data to these values, we used a library designed to
interface with the MPU6050 over Raspberry Pi (Hirst). The PCA9685 was used to specify the servo
positions for each leg. We used another library to interface with the PCA9685 to set these positions
(Sprung).

In order to deploy our trained model onto the Pi, we installed the Python package Torch using a pre-built
version of the package designed for the processor on the Pi. We used CMake to build our main application
and link Torch and the PCA9685 library.

Before we were able to train our neural network using Python, we needed a virtual model of our robot.
Instead of reverse engineering the robot ourselves to construct a virtual model, we utilized a model found
online created by a third-party designer (AIWintermuteAI). The model was a collection of meshes
organized as a Unified Robot Description Format (URDF) file. We modified this file to alter the standing
position of the robot by changing the joint angle values. This put the robot in a more stable starting
position.

7

For virtual training, a PyBullet simulation is converted into a Markov Decision Process (MDP). The state is
drawn from PyBullet measurements, and the action is applied to the relevant virtual joints. The state is
designed to mimic what we have access to in real life, namely joint positions, roll, pitch, yaw, and
acceleration. The action is similarly based on setting joint positions. Gravity is assumed to be 9.8 m/s^2,
and the surface is flat. Note the friction coefficient used is the default in PyBullet. It is unclear how this
matches real life, more research is needed on friction coefficients in simulation. Once we have converted
the PyBullet simulation into a MDP, we are able to use typically reinforcement learning algorithms such as
DDPG on it. The output of these algorithms is a neural network, the actor, capable of stable walking in
simulation. Given the current state, it outputs an action that will lead to stable walking. This neural network
is created using PyTorch, which can conveniently be transferred to C++.

Developing the C++ application involved two main interfaces: embedded and agent. These two
components are linked via a buffer that passes the action and state values between them. The policy was
trained virtually and uploaded into the agent. Once the policy was in the robot, it no longer interacted with
the virtual environment. Figure 3 in Appendix IV shows the interaction between the virtual model, the
agent, and the embedded component. By using interfaces for the agent and embedded side, our application
has the flexibility to replace an agent or embedded implementation with a different implementation and still
use the same main application code.

To develop the agent interface, a setState and getAction method were defined. This interface was then
implemented in two different ways. The first implementation was the Stretching Agent. This
implementation was used for testing whether the robot could receive values and perform them correctly and
provided a way to verify all motors could activate. The Stretching Agent runs the robot joints through a
continuous series of motions, incrementally changing the joint angle values up to 45 degrees and then back
to -45 degrees. The second implementation was the Neural Network Agent. The Neural Network Agent
takes in the neural network model and uses the model to determine the next action for the robot. To
implement this, the code has been set up to take in the filename of the model on the command line. This
filename is provided to the Neural Network Agent when its constructor is called. Each of the servos are
initialized to the starting position and then the setState method gets the current state of the embedded
system. The getAction method utilizes the LibTorch dependency to determine what the robot’s next action
should be based on the model trained in PyTorch. LibTorch allows for loading in a serialized PyTorch
model and executing it purely from C++, with no dependency on Python.

To develop the embedded interface, a getState method and setAction method were defined. Two
implementations of the embedded interface were also developed. The first implementation was an
Embedded Test. This implementation was developed to test that the action and state values were getting
passed to and from the embedded side correctly when using the main application loop. The second
implementation of the embedded interface was the Petoi Bittle implementation. This implementation moves
the servos based on the output of our actor neural network. Additionally, the state of the robot is achieved
by getting data through the IMU.

Aside from the agent and embedded interface, the C++ application also had a main application loop and
logger implemented. Executing our main application without any command line parameters deployed the
Stretching Agent. To deploy our Neural Network Agent, the path to the trained model must be passed in as
the first command line argument. Both of these main application loops continuously get the state of the
embedded system, determine the next action based on the agent, and then pass this action back to the
embedded system. Command line arguments could also be used to free the servos from their last position or
start an interactive servo tuning sequence. The servo tuning sequence allowed for making
micro-adjustments to servo positions to account for any hardware misalignment. The logger was
implemented to provide a way to debug our application. To use the logger, a function name and message
are provided, and then the logger prints all messages to a log file.

8

In Appendix IV, some pseudocode is provided to give an overview of the implementation discussed.
Additionally, in Appendix IV, Figure 2 shows a UML diagram of the main components of the C++
application.

4 Testing

4.1 TESTING PROCESS

Throughout the development process, we created several tests to ensure our applications were functioning
properly. Incremental testing during the whole development cycle made finding errors simpler than trying
to test all parts of our final applications.

4.2 UNIT TESTING

Unit tests were created for both our virtual training and embedded system. The virtual training had unit
tests for the PyBullet physics engine and the Petoi Bittle environment. The embedded system used unit tests
to verify the servos and IMU were operating correctly.

To test PyBullet, we created a program which loads our model into the engine and launches its GUI. This
would show if the Python environment was properly set up and all the packages were installed correctly.
This program was also capable of moving the leg joints to specified angles. This was helpful with our
integration testing as it allowed us to verify the joint angles in simulation matched what we saw on our
physical robot. The Petoi Bittle environment was tested by loading the environment in PyBullet and
launching the GUI again. Once the environment was loaded, a random action was assigned to the virtual
robot. This allowed us to verify each joint on the virtual robot was able to move.

4.3 INTERFACE TESTING

Our servo and IMU unit tests also served as interface tests between the Raspberry Pi and the NyBoard.
These tests ensured our I2C communication was set up and functioning correctly.

We also tested the agent interface by implementing a stretching agent. This agent helped us ensure the
control flow of data from the NyBoard data to the agent and back was operational. The stretching agent has
a clear expected behavior (to move all joints to 45 degrees and then back to -45 degrees continuously), so
we could ensure from this that values were being passed to the embedded side correctly based on the
resulting behavior. Additionally, logging was used to identify the values that were being passed to the
embedded side to check that the values matched up with the expected behavior.

When implementing the neural network agent, we needed to verify that the correct values were being
produced from the forward pass of our neural network to obtain the action. This was done by checking the
values that were outputted by the neural network model in C++ and comparing them to the output from the
model in Python. If these values matched, then the model in C++ is producing the actions to pass to the
robot correctly.

4.4 INTEGRATION TESTING

Once the applications passed all of the unit and interface testing, we moved on to integrating the
components together. This was done by running our neural network agent in our main application loop. If
everything was functioning properly, the robot would get data from the IMU and its current servo location

9

and pass it to the neural network agent. The agent would receive this state, run the values through one
forward pass of the network, and output the new servo angles for each joint. This process should repeat
until the main application is terminated. This testing showed some flaws in our final system, which is
discussed in the results section.

4.5 ACCEPTANCE TESTING

For our project, we are conducting a proof of concept of a ML walking robot. Our goal was to demonstrate
to Dr. Rover, our client, a successful NN model and a physical robot that can learn how to walk based on
said model. These are both items that can be physically demonstrated to Dr. Rover.

Another goal of our project was to propose a way to implement machine learning into an undergraduate
course. Therefore, we set out to create a development process that could be followed along in a classroom
setting. For example, we could present modules that mirror the development process that we followed to
reach our final product. We would take aspects that we deemed were most valuable to us during our
learning process and make suggestions as to how these ideas could be incorporated into an undergraduate
lab. We would need our development process and implemented system to be reliable and maintainable in
order to be utilized from semester to semester. For an example of the types of lab activities students could
do related to this project, see Appendix V.

4.6 RESULTS

By the end of the second semester, we were able to successfully pass all of the unit and interface tests. Our
virtual model functioned properly in the PyBullet engine, and there was successful communication between
the Raspberry Pi and the NyBoard. While we got promising results of the robot walking in our virtual
training, the model did not meet our distance or speed goals set for the robot.

When elevated on a stand, the robot moved its legs in a walking motion. This motion did not translate very
well when the robot was on the ground. The robot often rolled over on its side when going to take its first
step. After making some modifications to the feet on the robot, the robot could move forward several
inches before either tipping over or hitting its front on the ground. These results were likely caused by
differences between our virtual environment and the real world. The differences that likely exist and what
changes we could have made, given more time, are discussed in Appendix III.

5 Related Products & Literature

5.1 PRIOR WORK/SOLUTIONS

Reinforcement learning is an area of research that is continually evolving and advancing. This model of
machine learning has many applications and will continue to be an area of focus in machine learning. As
reinforcement learning will continue to be an important tool in the future, our project aims to integrate
reinforcement learning concepts into the classroom. Teaching machine learning at the undergraduate level
can be somewhat challenging because it requires students to make “linkages between complex concepts in
linear algebra, statistics, and optimization” (Sahu et al., 2021). In a preliminary study by Sahu et al. titled,
“Integrating machine learning concepts into undergraduate classes”, methods to best teach machine
learning were explored. The researchers explored teaching machine learning in a side-by-side method and
as stand alone workshops. In the side-by-side approach, the machine learning concepts were integrated into
a pre-existing signals and system course. The researchers found that “while students like the side-by-side
delivery better, the workshops showed improved student learning” (Sahu et al., 2021). Based on this study,

10

we determined it would be useful to implement machine learning concepts in a CPRE course by
constructing labs, like workshops, that students can complete side-by-side with embedded machine learning
concepts being taught in the classroom. We have developed several lab materials, located in Appendix V, as
examples of labs that could be performed by students.

We also looked at literature to identify robot abilities in applications similar to ours. One particular area we
were interested in was the speed at which the robot could walk. In a study conducted by Haarnoja et al., a
deep reinforcement learning algorithm was applied to a four legged robot. The robot in this study was able
to “walk forward at a speed of 0.32m/s” (Haarnoja et al. 2019). The study also mentioned that this was
comparable to the default controller gait provided by the manufacturer (Haarnoja et al. 2019). We decided
to set a similar goal for our robot based on its default controller gait. Our robot walked at a speed of 0.19ft/s
using the default controller gait, so we set a goal to have our robot walk at a similar speed using the
machine learning algorithm.

6 Closing Material

6.1 CONCLUSION

Over the course of this semester, we successfully conducted reinforcement learning virtually and deployed
the model on the Petoi Bittle. We fully developed a C++ application which is responsible for passing the
actions determined by the neural network model to the embedded side of the application. The transition
from the virtual environment to the real world proved to perform differently due to the environment
differences. This was something that was expected, and we hoped to have enough time to fine tune the
reinforcement learning algorithm to achieve a satisfactory walk in the real world. See Appendix III for
recommendations on next steps for the project.

6.2 REFERENCES

● AIWintermuteAI (2021) Bittle_URDF [Source code].
https://github.com/AIWintermuteAI/Bittle_URDF/.

● C. Sahu, B. Ayotte and M. K. Banavar, "Integrating machine learning concepts into undergraduate
classes," IEEE , 2021, pp. 1-5,
https://ieeexplore.ieee.org/abstract/document/9637283?signout=success.

● Haarnoja, Tuomas et al. “Learning to Walk via Deep Reinforcement Learning”. arXiv preprint,
arXiv:1812.11103v3 [cs.LG], 19 Jun. 2019, https://arxiv.org/pdf/1812.11103.pdf.

● Hirst, R. (2012). PiBits [Source code]. https://github.com/richardghirst/PiBits/tree/master/.

● Lillicrap, Timothy P., et al. "Continuous control with deep reinforcement learning." arXiv preprint
arXiv:1509.02971, 2015.

● Seno, Takuma. “Welcome to Deep Reinforcement Learning Part 1 : DQN.” Medium, Towards
Data Science, 21 Oct. 2017,
https://towardsdatascience.com/welcome-to-deep-reinforcement-learning-part-1-dqn-c3cab4d41b6
b.

11

● Sprung, R. (2019). PCA9685 [Source Code]. https://github.com/Reinbert/pca9685.

6.3 APPENDICES

6.3.1 Appendix I - Operation Manual

6.3.1.0 Python Virtual Simulation Setup

1. Download and install Python3.7
2. Install Torch, Gym, Numpy, etc using pip
3. Register the Petoi Bittle Environment using “pip install -e path/to/PetoiBittleEnvironment. This

registers the environment with your python installation so it can be called as an external
4. Run main.py using the flags listed in the file. Specify “PetoiBittle-v0” as the environment. Use the flag

--store_models to save the models.
5. Run eval.py to test the models. Use --visualize to render a simulation, use --pause to step through it

frame by frame and print the state and action values
6. When you are happy with your model, use ConvertModelToCPP.py to convert the model from Python

to C++. Copy the C++ model to the Petoi Bittle along with the verification text file to make sure it
does not get corrupted.

6.3.1.1 Rasperry Pi Setup & Running the C++ Application

Torch Installation Process

7. Download and install Python3.7
8. Create and activate a Python virtual environment
9. Download numpy, torch, and gym using pip
10. Download Python 3.7 onto the Raspberry Pi

a. wget https://www.python.org/ftp/python/3.7.0/Python-3.7.0
11. Unzip the download in the home directory and run the following commands to install Python.

sudo tar zxf Python-3.7.0.tgz

cd Python-3.7.0

sudo ./configure

sudo make -j 4

sudo make altinstall

12. Make 3.7 default Python version
a. This may not be necessary as long as you can create a virtual environment with Python 3.7.

vim ~/.bashrc

alias python3='/usr/local/bin/python3.7'

source ~/.bashrc

13. Create the Python 3.7 virtual environment and activate it.
a. If successful, your shell prompt should start with (bittle_env)

12

https://www.python.org/ftp/python/3.7.0/Python-3.7.0

sudo apt-get install python3-venv

python3 -m venv bittle_env

source bittle_env/bin/activate

14. Install numpy using wheel
a. Wheels allows us to use a pre-built version of packages instead of having to build them from

source. This saves us a lot of time. The wheel must be for the same python version (cp37) and
architecture (armv7l). The Raspberry Pi 3 uses an ARMv8, but it can operate in an ARMv7
compatible mode (source: https://pi.processing.org/technical/).

pip install

https://www.piwheels.org/simple/numpy/numpy-1.17.1-cp37-cp37m-linux_armv7l.w

hl#sha256=e17c4b3b8b2e00ec1d9af5ddae2602b325b453465c0d9bfb0df7046b0989a760

b. To learn more about wheels: https://www.raspberrypi.com/news/piwheels/
c. Original source: https://www.piwheels.org/project/numpy/

15. Install torch using wheel
a. Original source: https://github.com/Kashu7100/pytorch-armv7l

pip install

https://github.com/Kashu7100/pytorch-armv7l/blob/main/torch-1.7.0a0-cp37-cp3

7m-linux_armv7l.whl

16. Install other torch dependencies
a. This dependency prevents errors when importing torch

sudo apt-get install libopenblas-dev

17. Test Torch Installation
a. Test the installation by importing torch in Python. If no output is given, then the library was

successfully installed

python3

>>> import torch

Install Embedded Libraries

13

https://pi.processing.org/technical/
https://www.raspberrypi.com/news/piwheels/
https://www.piwheels.org/project/numpy/
https://github.com/Kashu7100/pytorch-armv7l

1. Clone the below repositories to the home directory and follow the installation process given on
GitHub.

a. pca9685 (Servo control): https://github.com/Reinbert/pca9685
b. MCU6050 (IMU): https://github.com/alex-mous/MPU6050-C-CPP-Library-for-Raspberry-Pi

Build Using CMake

1. Download CMake

sudo apt install -y cmake

2. Create CMake file for libraries
a. In order for CMake to properly find and link the wiringPi and pca9685 libraries, two files

must be added to the Pi (FindWiringPi.cmake and FindWiringPiPca9685.cmake).
b. After creating these files and filling them with the contents below, move them to

/usr/share/cmake-#.##/Modules, where cmake-#.## is the version of CMake you are using.

FindWiringPi.cmake:

find_library(WIRINGPI_LIBRARIES NAMES wiringPi)

find_path(WIRINGPI_INCLUDE_DIRS NAMES wiringPi.h)

include(FindPackageHandleStandardArgs)

find_package_handle_standard_args(WiringPi DEFAULT_MSG WIRINGPI_LIBRARIES

WIRINGPI_INCLUDE_DIRS)

FindWiringPiPca9685.cmake:

find_library(WIRINGPIPCA9685_LIBRARIES NAMES wiringPiPca9685)

find_path(WIRINGPIPCA9685_INCLUDE_DIRS NAMES pca9685.h)

include(FindPackageHandleStandardArgs)

find_package_handle_standard_args(WiringPiPca9685 DEFAULT_MSG

WIRINGPIPCA9685_LIBRARIES WIRINGPIPCA9685_INCLUDE_DIRS)

3. Build
a. To build the application, navigate to the build directory (sdmay22-45/CppApplication/build).
b. This directory contains a script (run_cmake_all.sh) that will run all of the necessary

commands to generate a Makefile and build the main application.
c. The Python virtual environment must be activated to execute these commands.

Otherwise, CMake will not be able to find the path where Torch was installed.
d. The commands in run_cmake_all.sh can also be executed separately.
e. After building, a Makefile will be generated in the build directory. This Makefile can be used

to rebuild the application if any changes are made using make.
4. Setup CMake

14

https://github.com/Reinbert/pca9685
https://github.com/alex-mous/MPU6050-C-CPP-Library-for-Raspberry-Pi

cmake -DCMAKE_PREFIX_PATH=`python3 -c 'import

torch;print(torch.utils.cmake_prefix_path)'` ..

5. Build Application

cmake -build . -config Release

6. Run Application
a. Run the main application using the executable inside the main directory.
b. If no command line arguments are given, the Stretching Agent runs by default.
c. To run the Neural Network Agent on a trained model, pass the path to the saved model as the

first command line argument. Trained models can be added to the Pi from your local machine
using ‘scp’ if you are connected via SSH.

d. Running the application with ‘-f’ as the first argument frees the servos from their last set
position.

e. Running the application with ‘-t’ as the first argument starts an interactive tuning sequence to
adjust the position of the servos. The robot legs should be perpendicular to the body. To adjust
this, input an offset for each servo until it is perpendicular. To save an offset, enter ‘s’. The
tuning sequence should only need to be done if the legs are removed from the robot.

./main /path/to/model

7. Run Unit Tests
a. In order to run unit tests for the servos or IMU, include ServoUnitTest.h or

IMUUnitTest.h respectively. Next, instantiate the unit test in the main application and use
the function runUnitTest().

6.3.2 Appendix II - Alternative Versions

The initial version of our project involved utilizing TensorFlow and MuJoCo as development tools. These
tools were initially chosen because members of the team had prior experience with them. However, in the
beginning stages of the development process, TensorFlow was producing issues that we were having
trouble locating the root cause. As a result, we experimented with PyTorch to see if this would work
instead. PyTorch worked successfully with what we were trying to implement in TensorFlow, and we found
PyTorch was easier to work with even though the team did not have prior experience with it. Additionally,
MuJoCo was having trouble loading in our URDF file. Therefore, we tried PyBullet as an alternative. This
was able to load in the URDF file, and therefore, PyBullet was the newly selected physics engine for our
project.

6.3.3 Appendix III - Other Considerations

Throughout the implementation process, there were many different learning lessons. We learned a lot about
the difficulties in transitioning from a virtual training environment to the real world environment. Due to
these difficulties, we were not able to achieve the level of walking stability and speed that we had hoped. If

15

we had more time, there are several things that we would pursue to achieve the desired walking stability
and speed. The first recommendation for project continuation would be to accelerate the development cycle
by using a GPU for reinforcement learning. For our project, we utilized a VM provided by the university
that does not come with a GPU. The compute cluster that was available to us has a GPU, but the GPU is too
old for the newer PyTorch. Secondly, we would improve the physics simulation to better match reality than
it currently does. Utilizing more accurate friction coefficients and exact robot part size, shape, and density
would greatly improve the physics simulation and make virtual training more closely mimic reality. The
current software used for the physics simulation, PyBullet, is relatively new so with time, as the software
improves, it will become easier to more accurately simulate the real world. In our simulation, the default
friction coefficient is used and every part is considered the same weight. These assumptions may contribute
to some of the differences realized between the simulation and real world environment. Lastly, we would
recommend to consider a robot that is designed to have reinforcement learning applied to it from the
ground up. With our robot, we are not able to obtain torque values or accurately measure exact leg position.
As a result, we must assume that the robot accurately carries out the action it is told to without an explicit
way to check if this is actually true. Having more sensors and servos with encoders to verify the state is
correct could help achieve further walking stability and improve our training algorithm.

As we developed the training model, we observed some interesting behaviors from the robot. At one point,
the training model deployed on the robot produced a somewhat stable result, but instead of progressing
forward as you would when walking, the robot sort of bounced back and forth in place, so it looked like it
was dancing before eventually falling over. This was funny to watch. At another point, if the robot got to a
position where it was close to laying down, it would choose to lay down and quit trying to walk so that it
didn’t have to risk getting a negative reward. It was really neat to see how the robot would react to the
different reward functions that were put in place. Even though the robot did not successfully walk as we
wanted, the team still learned a lot about machine learning and how you would even begin to implement a
more complicated learning algorithm as well as how this can integrate with an embedded system.

As a final attempt to improve the stability of the robot with the current model, a team member 3D printed
shoes for the robot so that each leg could have a wider base. This seemed to improve the robot’s stability
and allowed the robot to remain standing for a longer period of time.

For future work on lab development, finding ways to have the training happen faster is a plus and is
well-welcomed. Another potential area for future work is to create more labs with additional focuses
besides these three. This could potentially be looking more critically at how the environment is set up and
exploring different setups for the environment. This could help students know how to set up their own
machine learning applications and can help understand more of a “follow-through” process.

16

Figure 2: Petoi Bittle with Shoes

6.3.4 Appendix IV - Code & Diagrams

Figure 3: Component Diagram

17

Figure 4: Conceptual Design Diagram

Pseudocode for C++ Application:

Class IAgent (Interface for the agent)

Constructor(String model) //needs file location of NN if using one

Destructor

setState(State s)

getAction()

learn(Reward r) //this one most likely isn't needed unless we want to

learn on the robot

Class IEmbedded (Interface for the embedded side)

Constructor()

Destructor()

getState()

setAction(Action a)

getReward() //this one most likely isn't needed unless we want to

learn on the robot

Class Application (IE the main)

main()

Init embedded

Init agent

while(1)

State s = embedded.getState()

agent.setState(s)

Action a = agent.getActions()

embedded.setActions(a)

18

6.3.5 Appendix V - Lab Module Example

Our team has included three lab modules to cover three critical points of understanding: Basic RL concepts,
Actor and Critic relationships, and the Reward Function. Two of the three labs involve the Petoi Bittle and
the introductory lab uses the MountainCar simulations we experimented with early in the project. The labs
have been crafted to have specific goals and objectives at the beginning of them tailored to target the three
critical points of understanding mentioned above.

Each of these labs are meant to be completed over several weeks. Our team believes it is important for
students to engage with training the model, even though it is time consuming. Thus, for a class structure,
since training takes a long time, fewer labs that included critical and denser concepts was considered more
beneficial than shorter and smaller labs that barely scratched the surface. This approach will also allow
students to participate more in-depth with the provided code and Petoi Bittle simulation and application. An
excellent closing lab could be to help guide students to the final solution of the real-world application from
the digital simulation or guide them in exploring how to do this.

The first lab is focused on the Basic RL Concepts. The goal of this lab is to ensure students can identify the
fundamental concepts in the code provided. It is structured to give them a guided start to knowing how to
use the code our team has developed to aid their understanding. They should be able to analyze and
interpret gathered information from the software and be able to identify the Bellman equations in code by
the end of the lab. This lab is not meant to be as long as the other labs, but we still believed it was a good
start in order to get students familiar with the course and some of the basic concepts. There is some training
required in this lab, but it is not for the Petoi Bittle but instead for the MountainCar problem. We found this
problem an easy and accessible place to start compared to throwing students into the complexities of the
Petoi Bittle walking simulation.

The second lab focuses on the Actor-Critic relationship. This was another fundamental concept our team
identified and thought was important for students to understand. The goal of this lab is to have students
interact, analyze, modify and understand the relationship between the actor and critic. This lab is used with
the Petoi Bittle functionality. Students work to map out the actor-critic relationship in the code and, just as
in the previous lab, the students will train the agent, monitoring the change in relationship between the
actor and critic. This is to help students understand the impact of the decisions made in the model training
and help them solidify their understanding of this delicate relationship.

The third lab developed focuses on the reward function. This was yet another fundamental concept our
team identified would be beneficial to have a lab document on. This one is the longest lab we developed as
it requires many different training instances. This was necessary to be able to identify and see the
relationship between always rewarding, never rewarding, and then finding a middle between those. This lab
is meant to be the launching point for the final lab we mentioned above.

These are example labs and depending on the class structure, they can be longer or shorter. If opting for
shorter labs, the labs can be broken up so one or two sections of each lab are due each week (based on
length and complexity). This can help monitor student progress more regularly and ensure students do not
fall significantly behind. This may be beneficial due to the length of the simulations. The downside of the
shorter labs may result in students not being able to engage with more complicated ideas that longer labs
can elaborate on. Another solution we came up with for the longer training times is to find a resource for
larger processing power, whether that be through GPUs or a server cluster. Although this would be
expensive for the class, this could be a tool to do more with the lab content in a shorter period of time. This
would result in students being able to train many models quickly and focus on more in-depth concept
application.

The following links may be useful at various points in the labs:

● How to create MDPs - https://gym.openai.com/docs/#environments

19

https://gym.openai.com/docs/#environments

● Information on different RL algorithms -
https://ychai.uk/notes/2019/04/02/RL/SpinningUp/RL-taxonomy/

● How to use PyBullet (simulator) -
https://usermanual.wiki/Document/pybullet20quickstart20guide.479068914/html#pf15

● How to create a custom MDP -
https://gerardmaggiolino.medium.com/creating-openai-gym-environments-with-pybullet-part-2-a1
441b9a4d8e

● Info on DDPG - https://spinningup.openai.com/en/latest/algorithms/ddpg.html

● General info on how NNs work -
https://www.youtube.com/watch?v=aircAruvnKk&ab_channel=3Blue1Brown

● Past work on trying to train RL algorithms on robots in simulation -
https://www.youtube.com/watch?v=Wypc1a-1ZYA&start=381&ab_channel=MATLAB

20

https://ychai.uk/notes/2019/04/02/RL/SpinningUp/RL-taxonomy/
https://usermanual.wiki/Document/pybullet20quickstart20guide.479068914/html#pf15
https://gerardmaggiolino.medium.com/creating-openai-gym-environments-with-pybullet-part-2-a1441b9a4d8e
https://gerardmaggiolino.medium.com/creating-openai-gym-environments-with-pybullet-part-2-a1441b9a4d8e
https://spinningup.openai.com/en/latest/algorithms/ddpg.html
https://www.youtube.com/watch?v=aircAruvnKk&ab_channel=3Blue1Brown
https://www.youtube.com/watch?v=Wypc1a-1ZYA&start=381&ab_channel=MATLAB

Understanding Basic RL Concepts

In this lab, there will be experiments with the actor and critic network, and an application of the
Bellman equations discussed in the lecture. At the end of the lab, the student should be able to
identify applications of the Bellman equations in the models provided, successfully experiment
with the provided RL model and devise conclusions based on that model, be able to execute the
use of the software tools provided, and analyze and interpret gathered from the lab materials.

The student will be using the MountainCar files provided in order to train and experiment with
these concepts.

1. Recall that the Bellman Equation represents the sequence of rewards based on the
actions that are taken. Where in the code does the Bellman Equation appear? What do
the values represent?

2. In simple terms, what is the “goal” used to optimize the critic? Is this an effective goal?
Why or why not?

3. You will use the main.py script to train the DDPG agent MountainCarContinuous-v0.
You can visualize the learned policy by using the eval.py script. Note that training the
model should not take more than a few minutes to produce useful results. Provide a
brief description of your agent’s behavior.

4. How could you go about changing the goal of the critic? How would this improve your
training model? Run a few training models to see if you can get the car to move up the
hill. Train the agent. Document proof of your effort and experiments for this task. If you
were unable to complete the task, what behavior did you observe that was unwanted?
How would you go about remedying it?

Training the agent:

Note that training this agent will likely require many hours for complex models. It may be a good
idea to have multiple trainings happening at the same time. Each model that is saved will be
stored in a directory called pytorch_models. This can help reduce the wait for each part. In
order to train the model, you will have to run the following command:

python3.7 main.py –-env_name MountainCar-v0 –-save_models

21

Note that you may need to set the environment by using the following:

pip install -e path/to/Environment

Which will be the Petoi Bittle python environment for the model.

Testing the Models:

In order to test the results that you have, the following command will be run:

python3.7 eval.py –-visualize model_name

Note that you will have to insert the name of the model you have trained to input it into the
program correctly. It is assumed to be in the pytorch_models directory. You can also use the
–-pause flag in order to step through the simulation frame by frame and print out the state
and action values.

22

Actor-Critic Evaluation

In this lab, there will be experiments and exploration with understanding the structure and
functionality of the actor and critic behavior. At the end of the lab, the student should have a
greater understanding of how the actor and critic model to interact, be able to analyze, modify
and understand the relationships between the actor and the critic.

In Reinforcement Learning (RL) it is important to define the functionality of the actor and critic
well in order to have a solid understanding of their roles and how they contribute to the end
goal. For this lab, you will be using the Petoi Bittle files provided in order to analyze, modify, and
understand the relationships between the actor and critic.

1. Using your notes from class and the code provided, what is the role of the actor? How is
this reflected in the code? What roles does the actor have? Please list concrete examples
from the code provided as well as a brief description of how they interact.

2. Using your notes from class and the code provided, what is the role of the critic? How is
this reflected in the code? What roles does the critic have? Please list concrete examples
from the code provided as well as a brief description of how they interact.

3. How many inputs are there to the actor network? How many outputs? What clues does
it give you to know it is the actor-network?

4. How many inputs are there to the critic network? How many outputs? What clues does
it give you to know it is the critic network?

5. There are many different inputs that affect the agent’s behavior. In this next section of
the lab, you will be using evaluating and or editing eval.py and DDPG.py. Use the
information from the information you’ve gathered above and draw a diagram showing
how the Actor and Critic interact in DDPG.py.

6. Take a look at the train function located in DDPG.py. This is where the model is
ultimately trained using the information from the actor and critic networks that you
have examined. Notice that there are several different steps that occur before the
updating of the models. Come up with 3 different experiments that either target the
critic or actor models. These should be executed by commenting out code, we will

23

analyze the change in training in this method. Train the agent. Describe what your
experiment is targeting (actor or critic training) and what the results are. Please provide
thorough documentation of the results you see. This can be done through images,
explanations, and screenshots. How much does each change affect the outcome? Note:
Look at the notes below for training and testing the module to help you.

24

Reward Function Analysis

In this lab, there will be experiments with the reward function to see how it impacts the
behavior. Note that training the agent takes a lot of time. The earlier you begin the better. At the
end of the lab, the student should have a greater understanding of the relationship between the
reward function, analyze and gather data from the model through experimentation, and draw
conclusions of the effect of the model. Note that there are sections in the bottom of the lab to
be used as reference to help you know how to train and test the models you create.

It is recommended you train the agent as early and as soon as possible for training the agent
can take a very long time.

1. Recall from lecture that a reward is an incentive for the agent to do something to
achieve its goal. Open PetoiBittleEnv.py file and examine the reward function
return value. Set the reward function to always return -1. Train the agent. Provide a
brief description of what the agent learns to do. Why do you think this is?

2. Now set the reward function to return a value of +1. Train the agent. Provide a
description of what your agent learns to do. Why do you think this is? How is this
different from setting the reward function to always return -1?

3. How can you change the reward function so that it will give points for moving forward?
Make those changes (and only those changes). Train the agent. Provide a brief
description of what your agent learns to do. Why do you think this is?

4. Does the above question successfully create a walking agent? Is this what you expected?
Why or why not?

5. Add in the provided reward function to the code again. What is different about it from
the reward function you added in Step 3? Identify at least two distinct parts of the
function and how they impact the result. For each part, answer the following: What does
this part do? What is it composed of? Where do these inputs come from? How do you
anticipate they affect the output?

25

